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Making in Extended Reality

ZE DONG∗, School of Product Design, University of Canterbury, NZ

BINYANG HAN†, School of Product Design, University of Canterbury, NZ

JINGJING ZHANG‡, School of Product Design, University of Canterbury, NZ

RUOYU WEN§, School of Product Design, University of Canterbury, NZ

BARRETT ENS¶, Department of Computer Science, The University of British Columbia, Canada

ADRIAN CLARK∥, School of Product Design, University of Canterbury, NZ

THAM PIUMSOMBOON∗∗, School of Product Design, University of Canterbury, NZ

Fig. 1. The exploratory study setup and screenshots of the experiences: a) experimental setup, b) introduction to Event 1 (E1), c)
‘Inform’ in E1, d) ‘Nudge’ in E1, e) ‘Recommend’ in E1, and f) ‘Instruct’ in E1.

The integration of extended reality (XR) with artificial intelligence (AI) introduces a new paradigm for user interaction, enabling AI to
perceive user intent, stimulate the senses, and influence decision-making. We explored the impact of four AI-driven visualisation
techniques—‘Inform,’ ‘Nudge,’ ‘Recommend,’ and ‘Instruct’—on user decision-making in XR using the Meta Quest Pro. To test these
techniques, we used a pre-recorded 360◦ video of a supermarket, overlaying each technique through a virtual interface. We aimed to
investigate how these different visualisation techniques with different levels of user autonomy impact preferences and decision-making.
An exploratory study with semi-structured interviews provided feedback and design recommendations. Our findings emphasise the
importance of maintaining user autonomy, enhancing AI transparency to build trust, and considering context in visualisation design.
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1 INTRODUCTION

As artificial intelligence (AI) continues to advance, previous research has explored its role in automating, optimising,
and enhancing the generation and interpretation of visual data, aiding users in comprehending complex information
more effectively [49]. AI’s data analysis and pattern recognition capabilities have been shown to significantly improve
decision-making accuracy and efficiency [10]. However, there is still considerable potential to explore how AI can be
more effectively harnessed to understand user intentions and create visualisations that better align with user needs,
thereby enhancing decision-making processes in real-time. Through the classification of AI autonomy by Parasuraman
et al.[33] and O’Neill et al.[31], we see the potential for leveraging different levels of AI autonomy to drive visualisations
that are more tailored to user intentions while preserving varying degrees of user autonomy.

Augmented reality (AR) glasses, as key devices within the extended reality (XR) platform—exemplified by models
like XReal Air 2 1 and Vuzix Z100 2—offer environmental adaptability, real-time information overlay, and multimodal
content presentation. These features highlight the potential for enhanced visualisation techniques when AI and XR are
combined. This integration could establish a new paradigm of human-computer interaction, significantly influencing
decision-making processes. In the initial stages of our study, we simulate the functionalities of AR glasses by using
360-degree video in Virtual Reality (VR). By integrating virtual elements into these videos, we emulate the real-world
experience of AR glasses within a controlled VR environment. This simulation allows us to test our design ideas and
explore effective design paradigm for AI-driven visualisation techniques in XR. By doing so, we aim to identify optimal
ways to enhance user decision-making processes. We believe as AR glasses become more prevalent and integrated into
daily life, the opportunities for using AI-driven visualisation in XR to assist decision-making are expected to be more
pervasive.

Our motivation is to address the challenge of aligning AI-driven visualisation techniques in XR with user needs.
Our preliminary research focuses on two aspects: First, we held an interdisciplinary workshop to identify research
gaps, design considerations, and how to display visualisations based on different levels of AI autonomy. Based on the
workshop’s findings, we developed a user interface (UI) design and tested it in an exploratory study. We simulated a
UI for AR glasses using a 360◦ video of a supermarket with a virtual interface overlay to investigate user preferences
and feedback across different events in the same setting. This study evaluated how AI-driven visualisation techniques,
customised for specific scenarios, can meet user decision-making needs, laying the foundation for future research in
designing and implementing these techniques in XR.

2 RELATEDWORK

2.1 AI-driven Visualisation Techniques for Decision Support in XR

Previous research has examined varying levels of AI involvement in decision-making [5, 26, 31, 33]. Neill et al. [31],
building on Parasuraman et al. [33], categorised agent autonomy into low, medium, and high levels. Despite the

1https://www.xreal.com/air2
2https://www.vuzix.com/products/z100-smart-glasses
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Exploratory AI-driven Visualisation Techniques in XR 3

advancements in AI-driven XR systems, there is still limited understanding of how different levels of AI-driven
visualisation techniques influence user behaviour and decision-making. Addressing this gap is the central focus of our
ongoing research, which aims to delineate the impact of these techniques, guided by prior studies [31, 33, 37].

Fig. 2. The agent autonomay level adapted by Parasuraman et al. [33] and O’Neill et al. [31]

As data complexity and volume increase, effective data management becomes challenging, often leading to missed
opportunities, wasted resources, and financial losses. Appropriate information visualisation techniques can enhance
decision-making by improving data comprehension and communication [19].

The integration of AI with XR significantly improves how data is processed and presented, aiding decision-making
[39]. Martins et al. [28] explored the integration of AR and AI within Decision Support Systems (DSS), emphasising
the role of situated visualisation in enhancing decision-making. Their study demonstrated how AR can provide real-
time, context-sensitive visual data overlays, offering intuitive and immersive insights that improve decision-making
effectiveness and efficiency.

Expanding on these developments, Kim et al. [20] demonstrated the utility of AR visual cues in autonomous driving,
enhancing safety and user cognition. Xu et al. [52] investigated the use of explainable AI (XAI) in AR-based intelligent
service interactions, proposing a design framework for integrating these technologies. Sadeghi et al. [42] highlighted
the potential of XR and AI in visualising complex structures, while Liu et al. [22] and Mahmud et al. [27] explored
enhancements in usability and accessibility of virtual environments through visual cues.

In sports training, AI-driven visualisation in XR has shown potential for improving decision-making and technical
skills. Tsai et al. [46] and Chen et al. [11] demonstrated how these techniques can enhance decision-making speed and
provide immediate feedback in basketball, offering scalable and cost-effective training solutions.

Manuscript submitted to ACM
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Recent hardware advancements, such as the AR glasses by Viture and XReal [47, 51], have made AI-compatible XR
interfaces more affordable, enriching user experiences [2, 54]. PANDALens, a Proactive AI Narrative Documentation
Assistant, exemplifies this by integrating with AR glasses to enhance daily activities through intelligent assistance
[8, 18]. It uses multimodal contextual information to generate coherent narratives with minimal user effort, improving
both writing quality and travel enjoyment.

AI-driven visualisations within XR have the potential to revolutionise decision-making across various fields by
offering dynamic and immersive ways to manage and interpret complex information. This research aims to explore
the effects of different levels of AI-driven visualisation techniques in XR on user decision-making in daily shopping
scenarios. An exploratory study will observe user behaviours and preferences, investigate the reasons behind these
behaviours, and reassess user evaluations of these techniques. This work contributes to the knowledge on AI-driven
visualisation technologies for decision support in XR, providing insights for optimising these technologies to enhance
decision-making.

2.2 Human-AI Interactions and TheirQualitative Analysis

Human-AI interaction, a specialised field within HCI [23], involves AI systems that integrate hardware and software to
simulate human cognitive behaviours such as creativity, learning, and speech. These systems operate autonomously
in complex environments, solving problems that surpass human capabilities due to data complexity. This interaction
views AI systems as intelligent entities with independent behaviours, extending the traditional scope of HCI [48].

The integration of XR and AI marks a new interaction paradigm, overlaying virtual interfaces onto the user’s
surroundings and enabling voice-enabled interaction. This fusion enhances communication with AI, helping to better
interpret user intent, stimulate the senses, and influence decision-making and behaviour [17, 38, 39]. As this technology
advances, the need for explainable, accountable, and intelligible AI systems becomes critical. Abdul et al. [1] emphasise
designing AI systems that are both technically effective and understandable to build user trust and comprehension.

Further exploring human-AI interaction, Bansal et al. [6] discuss AI-generated explanations in decision-making
within human-AI teams. Their findings indicate that while explanations increase trust and acceptance, they do not
necessarily improve team performance, especially when AI errors occur. Complementing this, Roy et al. [41] highlight
that high controllability in AI systems boosts user satisfaction, even with less accurate automation, underscoring the
importance of user control.

Lu et al. [24] investigate how user traits, such as personality and trust propensity, along with AI performance and
transparency, affect human-AI interactions in head-mounted displays (HMD) during AI-assisted spatial tasks. They
suggest that future AI assistance on HMDs should consider individual user characteristics and customise system design
accordingly.

Qualitative analysis is vital for understanding user needs and behaviours in human-AI interaction. It offers deeper
insights into how users interact with technology, revealing nuanced responses beyond simple binary answers [7].
For instance, Zhu et al. [56] used qualitative methods to uncover how a lack of transparency and incomprehensible
information in AI systems, such as Robo-advisors, can lead to distrust and hinder adoption.

Similarly, Siemon’s research employs qualitative interviews to identify key roles for AI in enhancing team dynamics,
showing AI’s potential as a collaborative team member [43]. Farič et al. [16] underscore the importance of qualitative
research by examining the integration of an AI-based diagnostic system in radiology. Their study reveals context-specific
insights that aid in adopting AI technologies in sensitive environments like healthcare.

Manuscript submitted to ACM
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Exploratory AI-driven Visualisation Techniques in XR 5

In conclusion, incorporating qualitative analysis into human-AI interaction research is crucial for designing systems
that align with human needs and societal values. It deepens our understanding of how AI systems are perceived and
used in real-world settings, supporting the development of user-centred and socially aware AI solutions [32]. This paper
contributes by systematically collecting and coding interview results, revealing behaviour patterns and preferences
among participants, and providing insights into AI-driven visualisation techniques in XR. These findings are valuable
for future design development and optimising user experiences.

3 INTERDISCIPLINARYWORKSHOP

The workshop focused on exploring AI-driven visualisation in XR, with unexpected daily events chosen as the theme
to set the context. The main goal of the workshop was to collaboratively explore and design AI-driven visualisation
techniques in XR that support user decision-making during unexpected daily events. Approved by the Human Ethics
Committee at the University of Canterbury (Ref: HREC 2024/51/LR-PS ), the workshop brought together experts in
psychology, interaction design, AI, and XR to review current technologies, identify triggers, brainstorm solutions,
develop design concepts, and evaluate their effectiveness.

3.1 Participants

Eight participants (2 females, 6 males, average age 32, SD=5.8) from the university took part, including three associate
professors in HCI, XR, and AI, a postgraduate psychology student, two interaction design experts, a game designer, and
a computer science research assistant.

3.2 Procedure

We used Edward de Bono’s Six Thinking Hats method [12] to structure the workshop, guiding strategic thinking
on AI-driven visualisation in XR. The procedure integrated diverse perspectives, generating design ideas and an
implementation agenda for an exploratory study focused on enhancing visualisation techniques. The method was
applied as follows:

• Blue Hat: Management and Control. Introduction, icebreaker, and overview of AI-driven visualisation in XR.
• White Hat: Information and Facts. Discussion on the characteristics of unexpected events, research sharing,

and identifying triggers in daily routines.
• Yellow Hat: Optimism and Positive Thinking. Brainstorming XR applications for managing unexpected events

and related stress.
• Black Hat: Critical Judgement. Evaluation of potential problems, challenges, and limitations in AI-driven

visualisation approaches.
• Green Hat: Creativity and New Ideas. Exploring novel AI-driven visualisation approaches in XR for managing

unexpected events.
• Red Hat: Emotions and Feelings. Sharing initial reactions and conducting peer evaluations.
• Blue Hat: Management and Control. Summary, future research directions, and post-workshop survey.

Our brainstorming focused on AI-driven visualisation techniques for AR glasses to aid decision-making under various
AI capabilities.

Manuscript submitted to ACM
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3.3 Results

The workshop primarily focused on AI-driven visualisation techniques, particularly within the context of everyday AR
glasses use. While several topics were discussed, we concentrated on two emerging themes: the level of AI capability,
especially its autonomy in decision-making, and scenarios related to everyday activities, including potential unexpected
events and associated stressors.

3.3.1 Level of AI Autonomy. The workshop findings aligned closely with the frameworks proposed by Parasuraman et
al. [33] and O’Neill et al. [31] on AI autonomy, which outline various levels of automation and human-AI interaction.
These frameworks encapsulated key aspects of our discussions and provided a foundational basis for our design
approach, particularly in emphasising human autonomy in decision-making processes. Building upon these established
frameworks, we developed a tailored set of four levels of AI capability specifically for XR interfaces aimed at supporting
decision-making while preserving user autonomy. Our proposed levels are:

• Level 1—Inform: Provides facts and information to aid decision-making (AI role-no assistance; human makes

all decisions).
• Level 2—Nudge: Gently guides users towards beneficial choices (AI role-offers decision/action alternatives).
• Level 3—Recommend: Suggests and justifies options, encouraging informed decisions (AI role-narrows selection

to a few, ranking them).
• Level 4—Instruct: Directs users with step-by-step instructions (AI role-suggests one alternative).

We use the terms Nudge’ and Recommend’, inspired by previous XR visualisation research on manipulating user
perceptions [37]. ‘Instruct’ was designed for emergencies where clear guidance is critical. Our visualisation techniques
align with these levels, ranging from simple information displays to direct instructions, offering assistance in decision-
making. Each level considers three factors: empowering the user by providing information and guiding decision-making,
adapting to the situation’s urgency or complexity, and respecting user autonomy, except in emergencies where the
highest level of assistance is necessary.

3.3.2 Stressors and Scenarios. We identified common stressors from discussions and previous research [35, 50], focusing
on three primary factors: time, finance, and health. These factors were central in our ideation phase and led to the
creation of six pre-designed events (see table ??), shaping the study environment for AI-driven visualisation techniques.

Following Eichhorn et al. [13], we chose supermarket shopping as a key scenario to elicit realistic responses. To
simulate real decision-making, we used a pre-recorded 360◦ video from an actual supermarket, incorporating the six
events influenced by the identified stressors. We hypothesise these will significantly impact decision-making in our test
scenarios.

Table 1. The six events were identified after narrowing down the ideas generated during the interdisciplinary workshop.

Events Descriptions Stressors
1. Unanticipated Rearrangement of essential aisles Time
2. Contingency Products out of stock Finance & Health
3. Opportunity Flash sale and clearance Finance & Health
4. Evaluation Product comparisons on different platforms Finance & Time
5. Disruption Fire Drill Time
6. Interruption Unexpected call Time

Manuscript submitted to ACM
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4 EXPLORATORY STUDY

The aim of this study is to test the practicality of our design ideas in real-world supermarket settings. This stage will
identify gaps between expected and actual user interactions through participant feedback and observations. Post-study
semi-structured interviews will offer deeper insights into participants’ thoughts and preferences. These insights will
help refine our data collection, management, and analysis methodologies. The findings will guide our UI design and
implementation, preparing for detailed analysis in the next phase.

4.1 Design of Visualisation Techniques with 360° Video

Based on the workshop findings, our design of each visualisation technique considers three specific factors:

(1) User Autonomy: Allowing users to control the information they receive and how they interact with it, offering
varying levels of assistance from basic information to detailed guidance.

(2) Contextualisation: Adapting the UI to different scenarios to ensure the information is relevant and useful in
various contexts.

(3) Progression: Gradually increasing the complexity and detail of the information provided, enabling users to
compare and understand the evolution across different visualisation levels.

These factors ensure the designs align with the purpose of each technique and clarify how AI-driven visualisation
influences decision-making. Figure 3 illustrates the UI elements for the four visualisation techniques overlaid onto a
360◦ video recorded in a supermarket, simulating the AR glasses experience across six events detailed in Table ??.

Event 1—Unanticipated:When a supermarket rearranges its aisles, AI visualisation techniques help customers find
products. Four techniques are used based on time: Inform, displaying icons for product locations; Nudge, guiding with
flashing arrows and time estimates; Recommend, showing ranked paths with colour-coded icons; and Instruct, selecting
the optimal path and directing the user.

Event 2—Contingency: If a product is out of stock, AI responds with visualisation techniques based on finance and
health: Inform, showing icons of similar products; Nudge, comparing substitutes with overlapping icons; Recommend,
ranking alternatives with percentage values and colours; and Instruct, calculating and highlighting the best alternative.

Event 3—Opportunity: When a promotion is discovered, AI’s response includes: Inform, notifying the user; Nudge,
evaluating products based on discount and healthiness; Recommend, ranking items with colours and icons; and Instruct,
showcasing the best promotional choices.

Event 4—Evaluation: Addressing concerns about higher prices, AI assists by: Inform, displaying prices and delivery
times from different platforms; Nudge, comparing these factors with symbols; Recommend, ranking platforms based on
price and delivery time; and Instruct, highlighting the optimal purchasing platform.

Event 5—Disruption: During a fire drill, AI’s visualisation focuses on safety: Inform, indicating exits; Nudge, tinting
the view red and flashing exit icons; Recommend, directing attention to escape paths with colour-coded arrows; and
Instruct, displaying the quickest exit route.

Event 6—Interruption: Handling an unexpected call requiring the user to meet soon, AI aids by: Inform, updating
on remaining time and shopping list; Nudge, planning item collection order and updating time estimates; Recommend,
showing time-efficient shopping procedures; and Instruct, optimising the shopping list order and maintaining time
awareness.
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Fig. 3. All four visualisation techniques, Inform, Nudge, Recommend, and Instruct, across six events.
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4.2 Participants

We recruited eight postgraduate students from the university, evenly split by gender (four males, four females) with an
average age of 28 years (SD=3.8). Half had XR experience, and all had AI experience, such as using ChatGPT 3. Four
participants self-assessed as having a basic understanding of AI, two had knowledge of AI-related terms, and two were
involved in AI research. All were pre-informed about the study, participated voluntarily, and provided consent.

4.3 Setup

Our system was developed in Unity (2022.3.5f1) with AI-generated voices by ElevenLabs 4. We used a 360◦ supermarket
video, recorded with an Insta360 One R camera at 3840 × 1920 resolution, viewed through Meta Quest Pro 5. The setup
included a high-performance PC (Intel i7 8700, 3.2 GHz, 32 GB RAM, Nvidia GeForce RTX 3080). The study took place
in a secure, quiet room to eliminate disturbances.

4.4 Procedure

After providing consent, participants shared their demographic information. They were then seated in the experimental
space, where they learned to use the Meta Quest Pro and our system interface through a pre-recorded instructional
video. Participants viewed various pre-recorded supermarket events, with the four visualisation techniques shown at
specific points. The order of these techniques followed a Latin square design to prevent order effects. After experiencing
all four techniques for each event, participants ranked them by preference and provided verbal explanations. This
process was repeated for all six events. Following the events, participants participated in a semi-structured interview
for more detailed feedback.

Fig. 4. The rankings in terms of user preferences for each visualisation technique for the six events.

5 EXPLORATORY STUDY RESULTS

To understand user perceptions of visualisation techniques and their impact on various events and to refine our UI
design, we conducted semi-structured interviews with 8 participants. These interviews explored their experiences
and gathered feedback on their interactions with the simulated system. By coding the recordings, we identified key
feedback, preferences, and patterns in their visualisation and interaction. This feedback provides valuable insights for
the next stage of development. The report presents participants’ preferences for each visualisation technique across
events and categorises their feedback into three themes: system evaluation, information visualisation, and AI concerns.

3https://chatgpt.com
4https://elevenlabs.io/
5https://www.meta.com/nz/quest/quest-pro/
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5.1 User Preferences

Themean for the preferences of visualisation techniques are represented as Inform,𝑥𝑖 𝑓 ,Nudge, 𝑥𝑛𝑢 , Recommend, 𝑥𝑟𝑐 , Instruct, 𝑥𝑖𝑠 ,
with lower numbers indicating higher participant preference, as shown in Figure 4.

Event 1 (Unanticipated): The most preferred visualisation technique was in the following order: Inform (𝑥𝑖 𝑓 =1,
SD=0), Nudge (𝑥𝑛𝑢=2.5, SD=.54), Recommend (𝑥𝑟𝑐=3, SD=.93), and Instruct (𝑥𝑖𝑠=3.5, SD=.76).

Event 2 (Contingency): The ranking from most preferable visualisation tehchnique was Recommend (𝑥𝑟𝑐=1, SD=0),
Nudge (𝑥𝑛𝑢=2.88, SD=.84), Instruct (𝑥𝑖𝑠=3, SD=.76), and Inform (𝑥𝑖 𝑓 =3.13, SD=0.99).

Event 3 (Opportunity): The most preferred visualisation technique was Recommend(𝑥𝑟𝑐=1.63, SD=.52), Nudge
(𝑥𝑛𝑢=1.63, SD=.74), Inform (𝑥𝑖 𝑓 =3.3, SD=1.04), and Instruct (𝑥𝑖𝑠=3.5, SD=.54).

Event 4 (Evaluation): The ranking from most preferable was Inform (𝑥𝑖 𝑓 =1.125, SD=.354), Nudge (𝑥𝑛𝑢=2.63, SD=.52),
Recommend (𝑥𝑟𝑐=2.63, SD=1.06), and Instruct (𝑥𝑖𝑠=3.63, SD=.74).

Event 5 (Disruption): The ranking was Inform (𝑥𝑖 𝑓 =1.75, SD=1.035), Nudge (𝑥𝑛𝑢=2.5, SD=0.93), Instruct (𝑥𝑖𝑠=2.75,
SD=1.28), and Recommend (𝑥𝑟𝑐=3, SD=1.069).

Event 6 (Interruption): The rank was Recommend (𝑥𝑟𝑐=1.88, SD=.64), Instruct (𝑥𝑖𝑠=2.13, SD=1.25), Inform (𝑥𝑖 𝑓 =2.5,
SD=0.93), and Nudge (𝑥𝑛𝑢=3.5, SD=1.07).

5.2 User Feedback

5.2.1 Overall Design and Implementation. Participants generally provided positive feedback on the system’s design and
implementation but highlighted the need for improved user adaptability and accessibility.They praised the UI concepts
and found the application of AI-driven visualisation techniques in daily scenarios interesting. P1 and P7 noted that if
AR glasses become as common as mobile phones, they could significantly change daily life.

P7, with a design background but no XR experience, emphasised the importance of user adaptability and adoption:

“It was very interesting to experience VR for the first time. However, I need more time to become familiar

with the equipment and system. Your system should include a clear usage guide to prevent me from needing

to ask you questions constantly.”

Participants appreciated the UI’s forward-thinking design but raised concerns about the Instruct technique potentially
reducing shopping enjoyment and increasing stress in financial and health-related events. P6 remarked:

“Instruct technique may be useful at certain events, but most of the time, it reduces the interactivity with

the system.”

Half the participants (P3, P5, P7, and P8) questioned the intended audience, noting that the UI design might not suit
all users, especially elderly individuals and those with colour blindness. They suggested considering these factors to
ensure accessibility and avoid added stress.

5.2.2 Visualisation Techniques. Participants suggested optimising the system’s visualisation techniques for better
clarity, control, and context awareness.. P4 and P7 noted that when the event’s context was clear, the icons were easily
understood. P4 added:

“When I know the background is a supermarket, I can easily understand the meaning of the corresponding

icons under different visualisation techniques with context. I think these icons are appropriate in context,

but the style is rigid. Your design may need to be improved, such as the location, colour, and text of the UI
Manuscript submitted to ACM
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with context. Additionally, there is a lot of room for improvement in how the UI appears... Can dynamic UI

be added? These factors should be considered in combination with visualisation techniques.”

Participants also provided specific feedback on each technique. P2, P3, and P4 wanted more control over the ‘Inform’

technique, seeking greater transparency in AI recommendations. For ‘Nudge’, P7 and others felt it was too controlling,
despite its clever prompting. The ‘Recommend’ technique was appreciated by P7 and P8 for aiding decision-making
without being overwhelming. The ‘Instruct’ technique was deemed effective for quick decisions in emergencies (P1, P7).

P1 and P8 suggested adding more information during Event 5—Disruption, with P8 proposing a countdown timer to
reduce stress. P1 added:

“I would be very inclined to use the system’s ‘Recommend’ and ‘Instruct’ techniques if AI can inform me of

the cause and severity of an emergency situation, and the pros and cons of an escape route in real-time and

within a short period, it will provide help for find the most suitable escape route by avoiding crowded areas

when everyone is running for their lives.”

P6 requested more detailed information during Event 4—Evaluation, particularly for financial decisions:

You should adjust the information detail of the corresponding visualisation techniques according to the

event context. In event 4, I hope that the ‘Recommend’ technique can provide more product information,

such as the unit price. I don’t like the ‘Instruct’ to tell me directly. I need more detailed information about

prices and others.

Conversely, P5 preferred a concise, intuitive display, avoiding overstimulating colours and dynamic effects for
comfort:

“I feel uncomfortable with the ‘Nudge’ technique potentially aiding decision-making through flashing.

The flashing induces a sense of tension. In an emergency situation, I need a more concise and intuitive

visualisation technique to display information.”

P2 highlighted the need for simplified displays during Event 2—Contingency:

“The Contingency event display is more interesting. The use of icons allows me to obtain information more

quickly. I dislike text and anything that requires reading.”

5.2.3 Information Presentation. We analysed participants’ feedback on information display across different visual-
isation techniques. Participants emphasised the balance between detailed information and simplicity to enhance
decision-making.. P3 suggested AI could assist by gathering product information from various sources, aiding in price
comparisons:

“I am a budget person. If I can know the prices of other stores during my shopping, I can better manage

my living costs, much like the Inform technique provided. Also, I would like to know the cost price of the

product. The Inform technique should provide more information to better help me compare similar products

and make informed decisions while shopping.”

Event 5—Disruption, a significant time stressor, was extensively discussed. Participants wanted clear escape routes
and time prompts during emergencies. P2 noted:

“This scene impressed me the most. Under the ’Nudge’ technique, my view turned completely red, which

increased the sense of emergency. Although I knew the scene was fake, when immersed in it, I felt over-

whelmed and couldn’t distinguish the meaning and indicative nature of different UIs under this visualisation
Manuscript submitted to ACM
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technique... The system’s UI display should be clearer and more authoritative in emergency situations,

similar to the ’Instruct’ technique.”

Participants also suggested that more interactive design elements, like animations and conversation, could enhance
engagement. P5, P6, and P8 recommended integrating these elements to reduce conflict and discomfort with UI overlays
in the 360◦ video. Most participants (P1 to P5, P8) preferred informed assistance for better contextual understanding.
The responsiveness of the interface to real-time conditions was highlighted as crucial. P5, P6, and P8 emphasised the
need for varied visual cues, such as different animations, sizes, and transparency, to cater to diverse preferences and
situations.

5.2.4 AI Trust and Autonomy. Participants’ feedback revealed that trust in AI is complex and must be gradually built
through actual usage, with concerns about over-reliance and maintaining user autonomy. P5 remarked:

“I don’t have many opportunities to use XR devices. I think the ‘Inform’ technique is very effective, and AI

does not intervene too much. Although the system provides a large amount of information sorted by AI, I

have doubts about the ranking process. I am uncertain about how AI selects relevant information and I am

concerned whether the ranking is influenced by manufacturers’ advertising fees.”

P1 supported AI-driven recommendations but stressed the importance of retaining user autonomy for independent
decisions. P4 expressed concerns about potential dependency on AI, noting:

“AI-driven Nudge’ and Recommend’ techniques are convenient and can facilitate better decision-making.

But I am concerned that long-term use and reliance on the accuracy of AI-provided information may become

a dependency problem. Then leading to a preference of users for ‘Instruct’ in decision-making.”

Several participants (P4, P7, and P8) were concerned about AI’s impact on autonomy and its potential to influence
decisions. P3 highlighted the need for the AI system to manage multiple simultaneous events and provide appropriate
assistance during complex situations.

6 DISCUSSION

This section summarises our findings based on observations and user feedback, discussing their implications.

6.1 Event-related Factors

Event 1—Unanticipated: Participants strongly preferred the Inform technique’s straightforward approach, especially
under time constraints, over more suggestive strategies like Nudge, Recommend, and Instruct.

Event 2—Contingency:The Recommend technique stood out, particularly under finance and health factors, indicating
that users favour clear comparisons.

Event 3—Opportunity: Participants preferred Nudge and Recommend for unplanned events requiring decision
support, suggesting that more detailed comparison and ranking are favoured in contexts involving finance and health.

Event 4—Evaluation: There was a strong preference for Inform over low-autonomy techniques like Nudge and
Instruct, emphasising the value of direct information under finance and time factors.

Event 5—Disruption: The lack of significant differences among techniques suggests they have similar impacts in
disruption events, highlighting their potential interchangeability based on event characteristics.

Event 6—Interruption: Similar to Event 5, no significant differences were found among techniques, indicating their
possible redundancy in interruption scenarios.
Manuscript submitted to ACM
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Overall, Events 1 and 4 show that straightforward alternatives like Inform are sufficient for familiar tasks, while
Events 2 and 3 demonstrate a preference for Recommend and Nudge in unfamiliar situations requiring additional decision
support. This aligns with prior research [52] and suggests that AI explanations can enhance perceived autonomy and
trust [4]. The preference for each technique is context-dependent, varying with external factors.

6.2 Design Implications

6.2.1 User Adaptability and Training. Designing the UI should prioritise user adaptability to ensure a consistent
experience, similar to adaptive UI improvements [34, 45]. The integration of XR and AI can enhance HCI by leveraging
real-time data analysis. The system could dynamically monitor user focus, cognitive state, and environment, updating UI
elements in AR glasses. For instance, during shopping, AI could deliver personalised information and recommendations.
Intuitive visual cues and personalised tutorials can help users quickly adapt and improve usability.

6.2.2 Visualisation Techniques and Decision-Making. Colour coding [29, 44] and other visualisation techniques [36, 40]
can enhance decision-making efficiency. Participants preferred comprehensive information, like prices and discounts,
particularly in Event 3—Opportunity, for better comparison and decision-making. Future XR systems could allow users
to compare AI-generated decision suggestions based on historical data and outcomes, aiding decision-making with the
latest analytical results.

Beyond shopping, data sharing between emergency responders and patients via wireless communication can optimise
emergency aid strategies. AI could detect real-time health data and display critical information on responders’ AR
glasses.

6.2.3 User Autonomy and Trust in AI. Participants emphasised the importance of maintaining autonomy despite AI’s
personalised recommendations [9, 15, 21, 30]. Trust in AI systems is closely linked to their transparency; users are more
likely to trust and accept AI recommendations when they understand how decisions are made [53]. Transparent AI
processes enable users to grasp the rationale behind recommendations, which is essential for building long-term trust.
To enhance transparency, incorporating explainable AI (XAI) techniques can provide users with insights into the AI’s
decision-making processes [52]. By offering explanations through inspection mechanisms [57], users can observe AI
operations in real time via AR glasses, facilitating smooth transitions between manual and automatic processing. This
real-time observation aligns with participants’ desire for greater control and understanding of the AI system. Moreover,
educational resources on AI and XR technologies can further enhance trust by demystifying complex AI functionalities
and reducing apprehension towards automated assistance. By increasing users’ knowledge and familiarity with the
technology, they can make more informed decisions about when and how to rely on AI support.

Participants also highlighted that multimodal interfaces play a significant role in enhancing user engagement
and autonomy. Utilising natural inputs like voice, gestures, and gaze control allows for more intuitive and seamless
interactions with AI systems. These multimodal interfaces enable users to communicate with the system in ways that
are comfortable and familiar, making it easier to override or modify AI recommendations when necessary.

6.2.4 Diversity and AI-Assisted Collaboration. Iterative optimisation of user experience design requires feedback from
diverse participants [3]. Advanced visualisation techniques should offer effective information filtering and sorting in
complex scenarios [14, 25].

Future XR platforms could simulate various study scenarios and remotely assemble diverse groups. AI could collect,
analyse, and filter dynamic data in real time, improving user experience. In remote conferences, AI could organise
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relevant materials based on discussion topics and roles, facilitating collaboration. AI could also support asynchronous
collaboration in XR through agents [55].

6.3 Limitations and Future Work

As an exploratory study, our small sample size limits the generalisability of the results. However, we successfully
identified potential research questions and hypotheses for future studies. In future iterations, we plan to scale up the
study by involving a larger and more diverse participant pool, which will strengthen the validity of our findings and
provide a more comprehensive understanding of user interactions with AI-driven visualisation techniques. We also
want to implement a working system for AI-driven visualisation techniques, moving beyond the current UI overlays.
Based on participant feedback, we will refine the simplistic UI designs. This study only examined a supermarket setting,
and many other use cases, such as healthcare,education and industrial environments remain to be explored. We hope
this paper encourages further research into different scenarios.

7 CONCLUSION

This research involved an interdisciplinary workshop and an exploratory study to refine design ideas and establish a
foundation for AI-driven visualisation techniques in XR. Participants’ preferences for visualisation techniques varied
significantly based on context and environmental factors.

Integrating qualitative analysis into human-AI interaction research is essential for designing systems that align
with human needs and societal values. Our qualitative research uncovered behaviour patterns, preferences, and key
factors influencing these behaviours, providing valuable insights for future design development and user experience
optimisation.

The results highlight the importance of maintaining user autonomy, ensuring transparent AI systems to build trust,
and considering context when selecting visualisation techniques. Future work should focus on implementing these
techniques in working systems, refining UI designs, and exploring additional use cases to encourage broader research
within the community.
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